If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2=64
We move all terms to the left:
2t^2-(64)=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $
| 38=5(u+4)-3u | | -2y+7=-5= | | -6=-5a+a | | 7(v-6)+3v=-32 | | -2=-5a+3a | | 19c+16+9c=16c–20 | | -9=6+y | | 2w+3(w+5)=-10 | | -3(x-6)=51 | | 28=7(x-6)+7x | | -9+a=8 | | (2x-9)=(7x-24) | | 3-2(2x+1)=x-14 | | 8=b+21/4 | | -2y+7=-5 | | 7=(v+2)+3v=-36 | | 7y+5(y+3)=-9 | | 15x-1(10+5x)=20x-10 | | 4x+15=2×+55 | | 4x+15=2×+55 | | (25+33)=(20x+53) | | (25+33)=(20x+53) | | (25+33)=(20x+53) | | -0.4x-3.1=5.9 | | -0.4x-3.1=5.9 | | 5r-12=63 | | 34+2n=82 | | x-0.1x=3090 | | v5=–28 | | 2(12x-16)=4(12-3x) | | (4s-6)°(3s-2)°=180 | | 4x^2=-4x-6 |